If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+20t-84=0
a = 4; b = 20; c = -84;
Δ = b2-4ac
Δ = 202-4·4·(-84)
Δ = 1744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1744}=\sqrt{16*109}=\sqrt{16}*\sqrt{109}=4\sqrt{109}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{109}}{2*4}=\frac{-20-4\sqrt{109}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{109}}{2*4}=\frac{-20+4\sqrt{109}}{8} $
| 1/2x+3/5x+7=29 | | (5t-21)=180 | | 4.5x-5.50=3x-6.50 | | (4t+16)=180 | | 3(x+2)5x=6+8 | | 1/4x=2/5x+2 | | 4t+32t-240=0 | | -10n^2-14n+224=0 | | 3x+2(-4x-10)=-65 | | (10x-30)=28 | | x2−2x−3=0 | | (10x-30)+28=180 | | -22=-6x-2(-4x+6) | | 30x^2-160x+2=0 | | 21(2-(x))+12x=44 | | 1=n+3 | | -3x+3(7x+13)=-159 | | x+33/2=17 | | Y=200-12x | | 4-y^2=121 | | (4)(1^2-8-16i^2+16)=0 | | 2k+4=34 | | p/6+2=4 | | 16z+141=96z | | (e+16)=180 | | (4)(1^2-8-16i^2+16)=100 | | -70=2+8v | | 5(4x+3)+9x=(20x+15)+9x | | -9=k/8-6 | | -10n^2-22n-3636=0 | | 2/x-1+4/2-x=0 | | (3e-32)=180 |